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Abstract - Large experiments and high-performance 

computer models generate many petabytes of data.  While Cloud 
Computing systems may meet the needs for analyzing these 
petabytes by harnessing the computing power of many 
distributed computers, the key challenge in effectively utilizing 
such a distributed system is the data management process, 
including storage, indexing, searching, accessing, and 
transferring data.  Most analysis tasks perform computations on 
a subset of a large data records satisfying some user specified 
constraints on attribute (variable) values. This subsetting 
procedure is extremely important in that it reduces the network 
traffic to and from the cloud facilities. However, selected data 
records often span many different data files, and extracting the 
values out these files can be time-consuming especially if the 
number of files is large. This work addresses this challenge of 
working with a large number of files.  We use a set of 
astronomical data set as an example and use an efficient 
database indexing technique, called FastBit, to significantly 
speed up the subsetting and thus optimize network usage.  
Overall, we aim to provide transparent and highly efficient 
attribute-based data access to scientists through a web-based 
Astronomy Data Analysis Portal. We will discuss the system 
design, and options for managing an extremely large number of 
files while minimizing network usage and latency.  

Index Terms - Astronomy analysis, Cloud Computing, 
fastbit, data search, astronomy data. 

I. INTRODUCTION 

Large experiments and high-precision simulations are 
providing invaluable insight into scientific phenomena.  A 
well-known challenge in these scientific endeavors is the 
mountain of data they produce; many experiments and 
simulations are already producing multi-petabyte of data and 
data volumes are growing exponentially.  This data explosion 
exist in nearly all fields of science, including astrophysics 
and cosmology, high energy physics, material science, 
climate modeling, fusion, and biology, to name a few.  Many 
of these analysis tasks require large computing capacity, and 
in some cases, the computing power required for analysis is 
as much as that needed for the original simulation that 
produced the data.  

Cloud Computing may satisfy the analysis requirements 
by distributing the computational tasks.  In many cases, 
Cloud Computing systems are also the more cost-effective 
solutions in comparison with traditional centralized 

approaches. Sharing data across the Cloud Computing 
facilities can be achieved through data transfers over high-
speed networks.  However, the key bottleneck in effectively 
utilizing Cloud Computing is usually the data management 
process, including storage, indexing, searching, accessing, 
and transferring the data.  Scientific data records may have 
an extremely large size, an extremely large file count, or both.  
While there are various techniques for managing data 
movement, a major issue is the amount of the data being 
moved that is not necessary for the analysis. In distributed 
data-intensive analysis environments, this problem can 
significantly degrade the performance of analysis.  In 
particular, network transport latency, along with data access 
latency, usually accounts for a substantial portion of time 
required for cloud-based scientific analysis.  Thus, it is 
important to have methods that extract the necessary data 
records at the source, before transferring the desired subsets 
to the analysis facility. 

Many analysis tasks perform computations on a subset of 
data records selected based on the attributes data values.  For 
example, when analyzing an astronomy dataset, one might 
want to plot a set of light curve for objects in a particular 
patch of the sky.  The data needed for this operation could be 
retrieved from data records satisfying certain range 
conditions on Right Ascension and Declination.  This 
subsetting procedure reduces the amount of data to be 
transported to the Cloud Computing facilities and is therefore 
critical to the overall effectiveness of the distributed analysis 
system. 

Selected data records often span many different data files.  
The analysis programs must know which data files include 
the selected records.  Extracting the values out these files can 
be time-consuming especially if the number of files is large.  
In some cases, the selected data records have to be 
reorganized such as clustering them based on the time stamps.  
Even though such subsetting and reorganization functions are 
frequently required, they are not well supported by current 
scientific data management systems. 

We describe the design and development of a generalized 
attribute-based unified data access service that provides 
transparent and highly efficient data-access mechanisms and 
optimizes network usage by reducing the data transport load 



at the source.  This requires a high-level coordination of data 
discovery, data selection, index generation, data access, and 
data delivery. We use the system for the Astronomical data 
analysis based on the cloud environment. Our approach is to 
provide a general-purpose service framework that will enable 
scientists to manage the data flows.  

  

II. BACKGROUND 

A. Astronomy Data Analysis 

Astronomy analyses face the difficult challenge of 
managing the distributed access to massive data sets. For 
instance, the Sloan Digital Sky Survey (SDSS) Data Release 
7 (DR7) [1] consists of 64TB of imaging and spectroscopic 
data. The imaging data covers about 8423 square degrees of 
"legacy" sky, with information on roughly 230 million 
distinct photometric objects, and about 3240 square degrees 
of SEGUE sky, with about 127 million distinct objects. The 
spectroscopic data includes data from 1802 main survey 
plates of 640 spectra each, and cover 8200 square degrees.  
Another example of a large database is SuperWASP Data 
Release 1 [2], which consists of about 120 billion data points 
in 18 million unique light curves derived from 3.6 million 
images.  This takes up 5.9TB of disk space for the light 
curves, and over 20TB for the raw images.   

These are only two examples of many large databases 
already available in the astronomy community.  The size of 
databases is certain to increase quite dramatically in the 
coming years, in all areas of survey astronomy.  In order to 
maximize the science products from such huge databases, 
often located in remote centralized data centers, it is of 
utmost importance to provide users with a general tool, 
which efficiently searches for subsets of desired data entries.  

In addition to the increasing size of the data, there is also 
a significant increase in the distance between data and 
application scientists, due to the large international 
collaboration where the massive amount of data is generated 
or collected in a few centralize data repositories. The concept 
of Cloud Computing has been adopted in astronomy research 
for tackling the problem of the data analysis over massive 
datasets. Although there are few examples of Cloud 
Computing for this purpose, the effective usage of the Cloud 
Computing has been proven in astronomy only if the relevant 
data can be easily and quickly accessed by the computer 
resources. 

For this study, we chose the Northern Sky Variability 
Survey (NSVS) [3,4] dataset, which contains light curves for 
16 million objects with typically 60-400 measurements per 
object. The NSVS is used by astronomers for analysis of 
patterns in the night sky in search of rare and transient 
astronomical events.  

While this dataset takes about 100 GB of disk space, it is 
divided into over 16 million files.  The large number of files 
has proven to be challenging for most file systems and 
scientific data management systems.  To reduce data 
management complexity, these files are grouped by a 
common attribute into 638 tar balls (each combining multiple 
files with the TAR function), and seven key attributes of all 
files are collected into a plain text catalog file.  However, 
searches were still far from optimized, particularly in the 

handling of timestamps.  Each NSVS observation contains a 
timestamp and analysis tasks typically require data records 
from specific time ranges, but the timestamps cannot easily 
fit in the catalog file.  Any query involving timestamps needs 
to read and process all 16 million files at least once, making 
such analysis tasks extremely time-consuming and even 
more so if data post-processing and over-the-network data 
transfer is involved.  Our approach to resolve this issue is to 
extend the NSVS catalog to include the time range of 
observations in each file, thus enabling more fine-grained 
search and selective data extraction/read from the dataset.  
This approach not only filters the data and reduces the 
amount of bytes delivered to end-users for the analysis, but 
should significantly reduce the time needed for data access, 
I/O operations, and network delivery. The Attribute-based 
unified data access service provides such transparent and 
highly efficient data-access. 

B. Astronomy Data Cloud Portal 

The StarCloud portal is a web-based service which 
provides user interfaces for search and extraction of 
astronomy data, as well as customized computing resources 
for the data analysis through Cloud Computing. The portal 
consists mainly of the data service and the analysis service. 
In the data service, a user can have an access to various 
astronomy datasets such as NSVS. It has an easy-to-use 
interface, where a user can input search parameter values and 
check the search results, then download the selected subset 
of the data. In addition, a user can download the data subset 
from the analysis computing resource as a tar ball using a 
URL provided by the data service system. The StarCloud 
data service became significantly more efficient owing to the 
backend Attribute-based Unified Data Access Service. 

The astronomical scientists need a variety of analysis 
tools, including open source community-delivered software 
and in-house programs for the analysis of astronomical data. 
However, there is a large cost in money and manpower for 
managing private computing clusters. It is still hard to use a 
public cluster with such various needs of analysis software. 
Cloud Computing can alleviate these issues by providing 
private computing environment for analysis of large 
scientific datasets in a cost-efficient manner.  

The StarCloud analysis service provides various 
astronomical tools with the Cloud Computing service. Users 
can have a virtualized private computing cluster on demand, 
which is customized with a specific operating system, 
libraries and scientific computing software in order to run the 
analysis on the data subset selected by the data service. They 
can select an analysis tool from listed astronomical data 
analysis tools on the portal, which is stored in virtual 
machine images, then request a data analysis resource with 
specific parameters, for example, the number of computing 
nodes, memory size, storage size, and so on. The request is 
delivered to the Virtual Cluster Service, which creates a 
computing cluster configured by virtual machines. The 
Virtual Cluster Service is a high-level tool in front of 
OpenNebula, a widely-used cloud management software, to 
create and manage virtual cluster instances, not just virtual 
machine instances. 



C. Challenges 

The main goal of this case study is not just to efficiently 
select the subset of light curve data for a given sky location 
and for a given time range.  Based on the timestamp attribute 
of individual measurements, we further select data entries 
sharing the same set of timestamps, i.e., observed at the exact 
same time by the survey instrument.  This sub-grouping is 
very useful in identifying and estimating the significance of 
systematic biases, which might have prevailed at the time of 
the survey observations and have not been properly removed 
by the original data analysis process.  If this is the case, then 
the apparent variability we see in the light curve data of a 
particular astronomical source may not reflect the intrinsic 
nature of the source.  Such biases may also hide whatever 
temporal variation the sky objects really have and could have 
been detected by the survey. 

The identification and removal of systematic bias is 
called “de-trending” and recent successful examples are 
given in references [8] and [9].  In order to run the de-
trending process, the light curve data has to be searched for a 
subset of measurement entries that share the exact same 
series of timestamps because only these subsets share the 
same systematic and environmental biases that occurred at 
the specific time of observations.  De-trending is difficult for 
a very large database because of the need to select the data 
entries that can be correctly compared with each other.  The 
selection process can be extremely time consuming with 
conventional approach as one needs to read through entire 
light curve entries, comparing the timestamp of a 
measurement entry with other entries for all other stars in 
nearby sky locations.   

Depending on the nature of the astronomical survey and 
the intended science analysis with the database, there can be 
several different sets of database challenges.  We believe that 
the present case study is an important representative 
challenge for all astronomical time-series survey databases. 

 

III. ATTRIBUTE-BASED UNIFIED DATA ACCESS SERVICE 

 Searching and refining dataset efficiently for analysis 
and moving the selected data reliably to the analysis 
computing facilities are difficult tasks. The Attribute-based 
Unified Data Access Service (AUDAS) will accommodate 
and support such complex tasks. Clients will only need to 
define a dataset of interest using range conditions on 
variables that are familiar to them and specify the data 
attributes for the analysis. 

In this NSVS case study, we 1) indexed the light curve 
observation timestamps so that data subsetting does not 
require reading the entire NSVS dataset, 2) reduced the 
searching time from O(n) time to O(log N) time using an 
indexing tool, called FastBit, and 3) optimized the data 
access process through a series of benchmarks that simulate a 
production-environment. 

A. Service Framework and API 

The Attributed-based Unified Data Access Service 
includes four components: Data Selection, Data Index, Data 
Access, and Data Delivery. When an analysis component 
contacts the Astronomical Data Analysis Portal, the data 
discovery mechanism first searches for relevant datasets 
through the metadata catalog provided by the user 
communities. The qualified datasets are further refined based 
on the selection criteria and the data index in Data Selection 
and Data Index components. These refined subsets are 
extracted and delivered to the client analysis component 
through the Data Access and Data Delivery components. 
Each component may be accessed separately based on the 
client needs. Figure 1 shows the overall design of the system 
and the interface between the components.  The Data Access 
service API is the means of communication between clients 
and the service components as well as between the individual 
components of the service framework. To allow maximum 
flexibility, a RESTful web service is implemented for the 
APIs.  

B. Data Index 

For attribute-based data selection, the Data Index 
component generates indexes for the dataset.  The goals of 
the Data Index component are to provide fast search across 
the dataset, and to allow for fine-grained data selection 
process in order to eliminate the data not needed for an 
analysis, thus significantly reducing the time needed for 
network and I/O operations.  The Data Index component has 
a flexible design, which can select index generation either 
dynamically or statically.  In most cases, the index is created 
for the entire dataset once, and is used for data selection as 
long as the dataset does not change. The dynamic indexing 
technique reduces the amount of index generation time, 
especially when datasets are very large and are dynamically 
growing. In this paper, the original CSV-based dataset is 
used. The search performance is described in the next section. 

FastBit is used in the Data Index component in this case 
study.  FastBit [5] is an efficient database indexing technique 
to speed up data search with conditions on attribute variables. 
It implements compressed bitmap index techniques for 
attribute-based searching operations using an SQL-like query 
system, and was designed to take advantage of the read-only 
nature of scientific data to provide more efficient search 
operations.  FastBit has been demonstrated in numerous US 
DoE scientific applications as able to significantly speed up 
attribute-based searching operations.  The storage cost of the 
index is reasonable.  In this case study, the original plain-text 
catalog file takes about 1.3GB, and the FastBit indexes take 
up 2.2GB. 

Work has been done to also use another tool, called 
FastQuery as the Data Index component.  The recently 
developed FastQuery [6] search system, based on FastBit, 
allows users to quickly search and access HDF5 and NetCDF 
files without the need to convert the user data into the native 
FastBit format.  



C. Data Selection 

As the recipient of data search results, the Data Selection 
component is the entry point to the Attribute-based Unified 
Data Access Service. The role of this component is to collect 
attribute information based on the selection specification 
from the clients, validate the attributes, and select the data 
and filtering information from the metadata search results. 
The selection information is then returned to the client for 
the next steps in the data access. The selection specification 
can be generalized so that different datasets and analysis 
tools can be supported in the future.  In our case study, SQL-
like queries are provided to FastBit in order to search the 
NSVS according to specified attribute values. 

D. Data Access 

The Data Access component extracts files from the 
dataset based on the selection produced from the Data 
Selection component. Data filtering and post-processing can 
be customized for the dataset, and the final results are 
packaged into a designated archive to be delivered to the 
clients for the next steps in data analysis.  Extensibility is 
built into the data filtering mechanism so that different data 
formats and analysis can be supported.  In this case study, the 
appropriate files are extracted from the NSVS dataset based 
on the Data Selection results, and repackaged into a tar ball. 
Because this process is I/O intensive, a file system directory 
was mounted in memory (tmpfs) as the staging area for 
extraction, post-processing, and repackaging in order to 
reduce the processing time. 

E. Data Delivery 

The Data Delivery component provides a transparent way 
to access data based on supported transfer protocols. The 
Data Delivery component will coordinate the movement of 
the selected dataset to the destination, using the desired 
transfer protocol. As the initial scope of the project, HTTP-
based data download is supported for the selected subsets to 
be transferred to the local destination. The extensibility is 
built into the component so that it would evolve with future 
networking infrastructures, supporting anonymous FTP, 
GridFTP [7] or SCP/SFTP. 

F. AUDAS and Cloud-based Astronomy Data Analysis 

Usage of the Attribute-based Unified Data Access 
Service (AUDAS) consists of two steps: general search 
based on the query string, and further filtering within the first 
search based on the time stamps.  When a user submits an 
SQL-like query string to view and retrieve a subset of the 
NSVS data, the web service performs FastBit queries on the 
NSVS index in the backend, and retrieves, post-processes, 
and re-packages the data for users to download.  When a user 
further specifies a time range to filter their initial search, 
AUDAS reads through every file of the pre-specified data 
subset, filters in light curve observations that fit in the time 
range, formats the output, and writes to a new set of files.  
Resulting data files are downloaded as a tar package file 
when requested. 

A RESTful API has also been provided to the Data 
Access component of AUDAS to enable scriptable and 

 
Figure 1: Overall architecture of the Attribute-based Unified Data Access Service 



customizable data search and acquisition.  Users enter the 
entire SQL-like query string and time ranges if desired as the 
fields to the URL query, and automatically download a tar 
ball as a REST response.  The RESTful API ensures a clean 
and flexible separation of components of AUDAS. 

 

IV. RESULTS 

A. Data Indexing 

To enable more efficient use of the catalog from NSVS, 
we expand it to include the time range and then build a set of 
FastBit indexes.  To build the FastBit indexes, we convert 
the text version of the catalog file into the binary format used 
by FastBit first and then use a FastBit command line tool to 
generate the appropriate bitmap indexes based on the 
characteristics of the data.  On the set of NSVS data, 
converting the catalog file from text format to FastBit binary 
format took about 166 seconds, and generating the bitmap 
indexes took about 48 seconds.  Since these are one-time 
operations, they do not factor at all into search time. 

B. Data Searching 

FastBit search was benchmarked against a line-by-line 
search of the NSVS plain-text catalog.  This full catalog 
search required an average of 138s, while the same search 

using FastBit indexes took a mere average of 0.121s, a 
speedup of over 1100.  On a cold start of the FastBit program, 
in which the large bitmaps have not been cached to memory 
yet, startup is only around 4x slower than average, about 
0.513s, but still is hundreds of times faster than the linear 
string search. 

C. Data Access – Tarfile-based 

The Data Access process is as follows: files are extracted 
from tar balls of the dataset, we call the source in the 
following discussion, based on results from a search onto a 
temporary location, we call the staging area. Additional 
filters and post-processors are applied to transform the data 
into the format useful for the analysis, and the final files are 
repackaged into a tar archive, and placed into a location, we 
call the destination, to await delivery to the end users.  In our 
case study, the combination of file systems on which the 
source, staging, and destination are located was subject to 
variation in order to assess the I/O efficiency of the file 
systems for use with the NSVS dataset.  To simplify the 
benchmarking process neither filters, nor post-processors 
were applied.  Single threading was used in both the 
benchmarked extraction and repacking scenarios.  The RAID 
and SSD benchmarks were performed on a private server 
with no other user on the system, while the GPFS and Lustre 

 
 

 
Figure 2: Data access performance (RAID as source) 



benchmarks were performed on the Hopper system at 
NERSC, where there are always tens if not hundreds other 
users on the system. 

From all benchmark scenarios, the actual bottleneck in 
the Data Access process is not in the results-packaging stage 
but in the data-extraction; we have shown that data-
extraction consistently requires approximately an order of 
magnitude more time than the packaging of results (figures 2 
to 5).  The results also indicate that, for this case study, not 
only does using tmpfs as the staging area greatly improves 
both the extraction and repackaging times regardless of the 
file systems used as the source and destination, but it also 
scales much better linearly with respect to the number of 
files to be accessed.  In terms of file extraction from datasets, 
it is shown that SSD is the best option for both the reading 
and writing of many small files (figure 3).  Distributed file 
systems that are optimized for reading and transferring a 

small number of large files in cluster computing, such as 
GPFS and Lustre, have been shown to be at a disadvantage 
in both reading and writing, compared to a simple networked 
file system such as NFS (figures 4, 5).  These benchmarks, 
however, are raw timings and do not account for the data 
transfer latencies due to fluctuations in network traffic in the 
case of the benchmarks on the various distributed/networked 
file systems.  It can be concluded, however, that, given 
background network latencies, local file systems such as 
RAID or SSD provide much more consistent I/O rates. 
 
  
 
 
 
 

 
 

 
Figure 3: Data access performance (SSD as source) 



 

 

 
Figure 5: Data access performance (GPFS as source) 

 
 

 
Figure 4: Data access performance (Lustre as source) 



D. Data Access – HDF5-based 

The Data Access flow for HDF5 is similar to that for the 
tar ball data-archiving method. In the HDF5 data 
organization scheme, light curve files are packaged into 
HDF5 files as arrays, or variables in HDF5 terminology.  A 
subset of light curve files that was organized into a specified 
tar ball is now a set of variables in the corresponding HDF5 
file; thus, the NSVS dataset consists of 638 HDF5 archives.  
Similar file system benchmarkings were carried out, and to 
ensure accurate, reproducible timings, a small C++ program 

was written that called FastQuery’s simple HDF5 access API 
to read data out of the HDF5 files.  Because FastQuery is 
build on FastBit technology, the speed of FastQuery search 
was not of main concern as it is projected to be on same 
order as FastBit search, so only FastQuery data extraction 
benchmarks were carried out. Again, to simplify the 
benchmarking process neither filters, nor post-processors 
were applied, and only single threading was used.  Both 
benchmarks were performed on the Hopper system at 
NERSC. 

 
Figure 6: HDF5-based data access performance benchmark 

 
 

 
Figure 7: HDF5-based data access performance 



Based on the benchmark results, the choice of file system 
for staging (tmpfs or not) had little, if any, impact on 
improving HDF5 extraction times (figure 7).  This is 
probably because only one file (the HDF5 archive) is being 
read at a time when multiple light curve datasets are being 
extracted from it, whereas with the tar ball archive, multiple 
files are being read from and written to disk.  The second 
observation to note is that on the whole, HDF5 data 
extraction on average takes much longer time than data 
extraction from tar balls.  The majority of the time is actually 
spent on opening and reading in the HDF5 files by 
FastQuery; opening and loading an HDF5 file into memory 
costs an average of 4.76 and 7.64 seconds for HDF5 archives 
stored on GPFS and Lustre file systems, respectively, while 
reading out individual variables of an HDF5 archive took a 
mere average of 1.73E-04 and 6.52E-04 seconds for HDF5 
archives stored on GPFS and Lustre file systems, 
respectively (figure 6).  This is because upon opening the 
HDF5 file, FastQuery caches the archive for later use.  
Because the NSVS dataset consists of 638 HDF5 archives, 
one Data Access procedure may require opening many 
HDF5 archives, which significantly increases extraction time.  
One solution to address this problem is to merge the dataset 
into a smaller number of HDF5 archives to reduce the 
number of HDF5 file open calls, but its benefits and tradeoffs, 
especially in caching and memory usage, have not been 
thoroughly assessed, and will be explored in future work. 

 

V. SUMMARY 

In this paper, we have described the design of the 
Attribute-based Unified Data Access Service and the 
performance of the data access for an astronomy data set.  
The purpose of this case study is to investigate methods to 
reduce data to be transported across networks in order to 
optimize network transport and minimize network latencies 
in cloud-based scientific data analyses. 

This study shows that FastBit is a much better alternative 
database indexing method to indexing through catalog text 
file.  FastBit has proven to be very scalable for datasets with 
high file set cardinalities.  Under a Cloud Computing 
environment that is supported by reasonably high-throughput 
networking, with FastBit in place for dataset querying, the 
bottleneck in any data analysis thus lies in data access 
process.  In our case study, the extraction of data from the 
NSVS dataset takes on average two orders of magnitude 
more time than the search operation, and the repackaging and 
compressing of resulting takes on average one order of 
magnitude more time than the search operation.  A standard 
source-staging-destination model was recognized for the data 
access in the Cloud Computing environment, in which a 
subset of the dataset located at a source is extracted to the 
staging area, post-processed, and repackaged into a 
destination folder for network delivery.  Studies indicate that 
using tmpfs as the file system for the staging area resulted in 
a substantial overall data access time reduction.  Benchmarks 
with high-performance distributed file systems such as GPFS 
and Lustre indicate that they are far from optimal in 
scenarios such as this case study, in which many small files 
are being moved around, because they are file systems 

optimized for reading and moving very large files.  Both tar 
ball-based and HDF5-based benchmarks using GPFS file 
systems gave less “stable” timing measurements, with much 
more I/O time variability.  Whether this is because the GPFS 
system in our experiment was mounted on a very busy node 
or because this is a side effect of GPFS’s design and 
implementation remains to be ascertained. 

From the benchmark results, it can be inferred that tmpfs 
is both the ideal choice of file system in general for reading 
and writing small files, with SSD coming slightly behind in 
both.  While RAID performs better than NFS for writes, it 
appears that NFS only slightly outperforms RAID in read 
rates, although both are outperformed in both aspects by SSD. 

On the HDF5 benchmarks, it was demonstrated that the 
majority of the HDF5 reading time was spent on loading the 
HDF5 file, not retrieving the data within the HDF5 archive. 

Because an HDF5 archive appears as one large file in the 
file system, as opposed to many files in the case of tarfiles, 
there are significantly fewer system calls for opening files, 
both for reading and writing, and so the data extraction times 
are largely independent of the type of file system the source 
dataset was mounted on.  Furthermore, in the case of using 
HDF5 archives, utilizing tmpfs as staging provided little, if 
any, speed improvement.  Because of the time used to open 
and cache in HDF5 archives to memory, HDF5 data 
extraction on the whole is slower than tarfile-based data 
extraction.  In the case of the NSVS dataset, merging the 
HDF5 files into a smaller file set may be a viable option to 
avoid this, but requires re-indexing and redefining the 
parameters for the Field_ID attribute, and there could 
potentially be tradeoffs with cache and memory usage. 

Future work involves further refinement of the data 
access process to ease the load on the data delivery (network 
transport) process.  Since the aforementioned benchmarks 
only ran on single-threaded mode, multi-threading will be 
explored in future work.  Preliminary multithreading 
benchmarks have been shown to increase tarfile-based data 
extraction rate by at least 2-3x.  As both FastBit and 
FastQuery support multithreading mode, future work will 
entail assessing possible improvements with multithreaded 
querying.  

The current HDF5 benchmarks used FastQuery to open 
into the dataset to retrieve the data, not query the dataset.  
Future work will include loading only the catalog index file 
for data querying by FastQuery, and use the HDF5 library 
directly to access the bulk of the dataset.  Finally, alternative 
data packaging formats will be tried, such as netCDF, which 
is also supported by FastQuery, or other compression formats 
that might enable either smaller files or faster decompression 
times, such as 7z or BZIP. 
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